

The drivers and health risks of the unexpected surface ozone enhancements over the Sichuan basin, China in 2020

- 3 Youwen Sun^{1, 2}, Hao Yin^{1, 2,†}, Xiao Lu^{3,†}, Justus Notholt⁴, Mathias Palm⁴, Cheng Liu², Yuan Tian⁵,
- 4 and Bo Zheng⁶

1

2

- 5 ¹Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine
- 6 Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- 7 2Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes,
- 8 University of Science and Technology of China, Hefei, 230026, China
- 9 ³School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, 519082, China
- 4University of Bremen, Institute of Environmental Physics, P. O. Box 330440, 28334 Bremen,
- 11 Germany
- 12 ⁵Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601,
- 13 China
- 14 ⁶Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School,
- 15 Tsinghua University, Shenzhen 518055, China
- 16 [†]Corresponding authors.
- 17 E-mail addresses: Hao Yin (yhyh95@mail.ustc.edu.cn) and Xiao Lu (luxiao25@mail.sysu.edu.cn)

Abstract

18

19 After a continuous increase in surface ozone (O₃) level from 2013 to 2019, the overall 20 summertime O₃ concentration across China showed a significant reduction in 2020. In contrast to 21 this overall reduction in surface O_3 across China, unexpected surface O_3 enhancements of 10.2 \pm 22 0.8 ppbv (23.4%) were observed in May-June 2020 vs. 2019 over the Sichuan basin (SCB), China. 23 In this study, we use high resolution nested-grid GEOS-Chem simulation, the eXtreme Gradient 24 Boosting (XGBoost) machine learning method and the exposure-response relationship to determine 25 the drivers and evaluate the health risks of the unexpected surface O₃ enhancements. We first use 26 the XGBoost machine learning method to correct the GEOS-Chem model-to-measurement O₃ 27 discrepancy over the SCB. The relative contributions of meteorology and anthropogenic emissions 28 changes to the unexpected surface O₃ enhancements are then quantified with the combination of 29 GEOS-Chem and XGBoost models. In order to assess the health risks caused by the unexpected O₃ 30 enhancements over the SCB, total premature death mortalities are estimated. The results show that 31 changes in anthropogenic emissions caused 0.9 ± 0.1 ppbv of O₃ reduction and changes in 32 meteorology caused 11.1 ± 0.7 ppbv of O_3 increase in May-June 2020 vs. 2019. The meteorology-33 induced surface O₃ increase is mainly attributed to significant increases in temperature and 34 downward potential vorticity, and decreases in precipitation, specific humidity and cloud fractions 35 over the SCB and surrounding regions in May-June 2020 vs. 2019. These changes in meteorology 36 combined with the complex basin effect enhance downward transport of O₃ from upper troposphere, 37 enhance biogenic emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), 38 speed up O₃ chemical production, and inhabit the ventilation of O₃ and its precursors, and therefore 39 account for the surface O₃ enhancements over the SCB. The total premature mortality due to the 40 unexpected surface O₃ enhancements over the SCB has increased by 89.8% in May-June 2020 vs. 41 2019.

Keywords: Ozone; Health risk; Emissions; Meteorology; Chemical model; Machine learning

2 1. Introduction

3

4

5

6

7

8

9

10

11

12 13

14

15

16 17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Surface ozone (O₃) is largely generated from its local anthropogenic (fossil fuel and biofuel combustions) and natural (biomass burning (BB), lightning, and biogenic emissions) precursors such as volatile organic compounds (VOCs), nitrogen oxides (NO_x), and carbon monoxide (CO) via a chain of photochemical reactions (Cooper 2019; Sun et al., 2018). Additional portion of surface O₃ is transported from far away regions or from stratosphere (Wang et al., 2020; Akimoto et al., 2015). Surface O₃ is one of the most harmful air pollutants that threatens human health and corps production (Van Dingenen et al., 2019; Lu et al., 2020; Sun et al., 2018; Fleming et al., 2018). Exposure to ambient O₃ pollution evokes a series of health risks including stroke, respiratory disease (RD), hypertension, cardiovascular disease (CVD), and chronic obstructive pulmonary disease (COPD) (Brauer et al., 2016; Liu et al., 2018; Lelieveld et al., 2013; Li et al., 2015; Wang et al., 2020; Lu et al., 2020). Lu et al. (2020) estimated that the premature RD mortalities attributable to ambient O₃ exposure in 69 Chinese cities in 2019 reached up to 64,370.

Surface O₃ variability is sensitive to both emissions and meteorological changes (Liu et al., 2020a; Liu et al., 2020b; Lu et al., 2019a). Meteorological conditions affect surface O₃ variability indirectly through changes in natural emissions of its precursors or directly via changes in wet and dry removal, dilution, chemical reaction rates, and transport flux (Lu et al., 2019b; Li et al., 2019a; Lin et al., 2008; Liu et al., 2020a). A reduction in temperature can lessen O₃ production by slowing down the chemical reaction rates (Lee et al., 2014; Fu et al., 2015; Liu et al., 2020a) or reducing the biogenic VOCs and NO_x emissions (Guenther et al., 2006; Tarvainen et al., 2005; Im et al., 2011). A dryer meteorological condition can result in an increase in surface O₃ level (Kalabokas et al., 2015; He et al., 2017; Liu et al., 2020a). Depending which process dominates the influence of planetary boundary layer height (PBLH) on surface pollutants, a higher PBLH can either reduce surface O₃ level by diluting O₃ and its precursors into a larger volume of air (Sanchez-Ccoyllo et al., 2006; Wang et al., 2020) or increase in surface O₃ level by transporting more O₃ from upper troposphere or lessening NO abundance for O₃ titration (Sun et al., 2010; He et al., 2017; Liu et al., 2020a). Transport of O₃ from stratosphere to troposphere by synoptic scale and mesoscale process, as indicated by an increase in potential vorticity (PV), typically leads to surface O₃ enhancement (Wang et al., 2019; Wang et al., 2020). Precipitation has been verified to decrease surface O₃ level through the wet removal of its precursors, and clouds reduce surface O₃ level by decreasing the oxidative capacity of the atmosphere and enhancing scavenging of atmospheric oxidants (Lelieveld and Crutzen, 1990; Liu et al., 2020b; Seinfeld and Pandis, 2016; Shan et al., 2008). A higher wind speed can decrease surface O₃ level by a fast ventilation of O₃ and its precursors (Lu et al., 2019a; Sanchez-Coyllo et al., 2006).

Emissions of air pollutants affect surface O₃ variability by perturbing the abundances of hydroperoxyl (HO₂) and alkylperoxyl (RO₂) radicals which are the key atmospheric constituents in formation of O₃ (Liu et al., 2020b). Many previous studies have verified a nonlinear relationship between O₃ and its precursors (e.g., Atkinson, 2000; Wang et al., 2017; Liu et al., 2020b; Sun et al., 2018; Lu et al., 2019). If surface O₃ formation regime lies within the VOCs limited region, reductions in VOCs emissions will result in a reduction in surface O₃ level. Similarly, if surface O₃ formation regime lies within the NO_x limited region, reductions in NO_x emissions will result in a

reduction in surface O₃ level (Atkinson, 2000; Wang et al., 2017). If surface O₃ formation regime lies within transitional region, reductions in either VOC or NO_x emissions will result in a reduction in surface O₃ level. Atmospheric aerosols can affect surface O₃ level through either heterogeneous reactions of reactive gases (Lu et al., 2012; Li et al., 2018; Stadtler et al., 2018; Lou et al., 2014) or affecting the solar flux for gases photolysis and oxidation (Li et al., 2011; Xing et al., 2017).

Understanding the drivers of surface O₃ variability has a strong implication for O₃ mitigation purpose (Sun et al., 2018; Lu et al., 2019a). China has experienced a continuous increase in surface O₃ level despite the implementation of control measures on NO_x since 2013 (Liu et al., 2020a, 2020b; Lu et al., 2018, 2020). Many studies have attempted to determine the drivers of high-O₃ events occurred in specific region and time across China. Most of these studies focus on the most densely populated and highly industrialized areas in eastern China, whereas the studies in the rest part of China are still limited (Liu et al., 2020a; Liu et al., 2020b; Lu et al., 2018; Sun et al., 2018; Wang et al., 2017). As China has a vast territory with a wide range of emission levels and meteorological conditions, O3 variability and its drivers may vary both temporally and geographically, so the results from one region are not likely to be applicable nationally. In addition, previous studies typically use state-of-the-art chemical transport models (CTMs) with sensitivity simulations to quantify the drivers of O₃ variability, e.g., fixed meteorology but varied emission levels to quantify the influences of emission changes or vice versa (Lu et al., 2019a; Liu et al., 2020a; Liu et al., 2020b). However, uncertainties in local meteorological fields, emission estimates, and model mechanism can lead to discrepancy in CTMs that may affect the accuracy of O₃ predictions and their sensitivities to changes in emissions and meteorology (Lu et al., 2019a; Young et al., 2018). This is in particular for the Sichuan basin (SCB), one of the most industrialized and populated cities cluster in western China, where large discrepancies between measured and modelled surface O₃ are found due to the complex terrain (Lu et al, 2019a; Wang et al, 2020).

After a continuous increase in surface O₃ level from 2013 to 2019, the summertime (May-August) O₃ concentration across China showed a significant reduction in 2020 (Figure 1 (d)). In this study, we use high resolution nested-grid GEOS-Chem simulation, the eXtreme Gradient Boosting (XGBoost) machine learning method and the exposure–response relationship to determine the drivers and evaluate the health risks of the unexpected surface O₃ enhancements. We first use the XGBoost machine learning method to correct the GEOS-Chem model-to-measurement O₃ discrepancy over the SCB. The relative contributions of meteorology and anthropogenic emissions changes to the unexpected surface O₃ enhancements are then quantified with the combination of GEOS-Chem and XGBoost models. In order to assess the health risks caused by the unexpected O₃ enhancements over the SCB, total premature death mortalities are also estimated.

2. Methods and data

2.1 Surface O₃ data and auxiliary data over the SCB

China has identified nine cities clusters that lead the populations and developments of economy, society, and culture across China. The SCB contains the fourth largest cities cluster in China after the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Beijing-Tianjin-Hebei (BTH) cities clusters. The location of the SCB cities cluster is shown in Figure S1. With Chongqing and Chengdu as the dual cores, more than a dozen cities including Mianyang, Deyang, Yibin, Nanchong, Dazhou, and Luzhou over the SCB have achieved rapid economic development and industrial

upgrading. As the region with the strongest economic strength and best economic foundation in western China, the SCB region has many industries such as energy and chemical industry, electronic information, food processing, equipment manufacturing, eco-tourism, and modern finance. As one of the most densely populated and highly industrialized region in China combined with the basin terrain which is easy to trap air pollutants, the SCB is a newly emerging severe air pollution region in China.

Surface O₃ measurements over the SCB are available from the China National Environmental Monitoring Center (CNEMC) network (http://www.cnemc.cn/en/, last access: 2 July 2021). The CNEMC network has routinely measured the concentrations of CO, O₃, NO₂, SO₂, PM₁₀, and PM_{2.5} at 122 sites in 22 key cities over the SCB since 2015. The mean geolocation, population, the number of measurement site, data range of each city are summarized in Table 1. The altitude of these cities ranges from 0.3 to 4.3 km (above sea level, a.s.l.) and the population ranges from 822 to 32,054 thousand. The number of measurement site in each city ranges from 2 to 21. Surface O₃ measurements at all measurement sites are based on similar differential absorption ultraviolet (UV) analyzers. The hourly mean time series of surface O₃ concentrations have covered the period from January 2015 to present at all measurement sites in the 22 cities. After removing unreliable measurements with the filter criteria used in Lu et al. (2020), we average the O₃ concentrations at all measurement sites in each city to form a city representative O₃ dataset. O₃ metric used in this study is on maximum 8-h average (MDA8) basis.

Since the vertical distributions of tropospheric HCHO and NO₂ are weighted heavily toward the lower troposphere over polluted regions, many studies have used tropospheric column measurements of these gases to represent near-ground conditions (Streets et al., 2013; Sun et al., 2018; Sun et al., 2021). In this study, the tropospheric NO₂ and HCHO columns used for investigating the changes in O₃ precursors in May-June 2020 vs. 2019 are prescribed from the TROPOMI Level 3 products. TROPOMI overpasses China at approximately 13:30 local time (LT) with a ground pixel size of 7 km × 7 km. Pixels with quality assurance values of less than 50% for HCHO and 75% for NO₂ are not included in present work.

2.2 GEOS-Chem nested-grid simulation

We use the high resolution nested-grid GEOS-Chem model version 12.2.1 to simulate surface O_3 over the SCB (Bey et al., 2001). Simulations are conducted at a horizontal resolution of $0.25\,^\circ$ × $0.3125\,^\circ$ over the nested domain ($70\,^\circ$ -140 \pm , $15\,^\circ$ -55 %) covering China and surrounding regions. The boundary conditions for the nested-grid GEOS-Chem simulation are archived from the global simulation at $2\,^\circ$ × $2.5\,^\circ$ resolution (Yin et al., 2019; Yin et al., 2020; Sun et al., 2021). We spun up the model for one year to remove the influence of the initial conditions. We first run global simulation at $2\,^\circ$ × $2.5\,^\circ$ resolution and then interpolate the restart file on 1 January 2018 into high resolution ($0.25\,^\circ$ × $0.3125\,^\circ$) for the nested domain to initialize the nested model simulation from January 2019 to June 2020.

The simulations were driven by GEOS-FP meteorological field at the native resolution of 0.25° × 0.3125° and 47 layers from surface to 0.01 hPa at the top. The PBLH and surface meteorological variables are implemented in 1-hour interval and other meteorological variables are in 3-hour interval. The time step applied in the model for transport is 5 minutes and for chemistry and emissions is 10 minute (Lu et al., 2019; Philip et al., 2016). The non-local scheme for the boundary

8

15

16 17

18

19

20

21

22

23

24 25

26

27

28

29

30

31

32

33

34

35

36

- layer mixing process is from Lin et al. (2010), wet deposition is from Liu et al. (2001), and dry
- deposition is generated with the resistance-in-series algorithm (Wesely, 1989; Zhang et al., 2001).
- 3 The photolysis rates are from the FAST-JX v7.0 photolysis scheme (Bian and Prather, 2002).
- 4 Chemical mechanism follows the universal tropospheric-stratospheric Chemistry (UCX)
- 5 mechanism (Eastham et al., 2014). The GEOS-Chem simulation outputs 47 layers of O₃ and other
- 6 atmospheric constituents over China with a temporal resolution of 1 hour.
 - We use the Community Emissions Data System (CEDS) inventory for global anthropogenic emissions at the latest 2017 level, which is overwritten by the Chinese anthropogenic emissions
- 9 with the Multi-resolution Emission Inventory (MEIC) in 2019 (Li et al., 2017; Hoesly et al., 2018;
- 10 Zheng et al., 2018). Anthropogenic emissions are fixed for 2019 and 2020. Global BB and biogenic
- emissions were from the Global Fire Emissions Database (GFED v4) inventory (Giglio et al. 2013)
- and the Model of Emissions of Gases and Aerosols from Nature (MEGAN version 2.1) inventory
- 13 (Guenther et al. 2012), respectively. Natural emissions of BB, biogenic VOCs, lightning NO_x, and
- soil NO_x are calculated online in the model.

2.3 Correction of GEOS-Chem discrepancy with machine learning method

We used the XGBoost machine learning method to correct the GEOS-Chem model-tomeasurement O₃ discrepancy over the SCB. It uses the Gradient Boosting Decision Tree (GBDT) framework to iteratively train the GEOS-Chem model-to-measurement discrepancy to improve the model predictions in a stagewise manner. XGBoost method minimizes the loss function by adding a weak learner for the purpose of optimizing the objective function. The optimization objective function used in XGBoost model is expressed as,

$$L^{(t)} \simeq \sum_{i=1}^{n} [l(y_i, \hat{y}^{(t-1)}) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i)] + \Omega(f_t)$$

$$g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)})$$

$$h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)})$$
(1)

where g_i and h_i are first and second order gradients of the loss function, respectively. $L^{(t)}$ represents the optimization objective function to be solved at the t-th iteration. $l(y_i, \hat{y}^{(t-1)})$ is the loss function representing the difference between the prediction for the i-th sample at the (t-1)-th iteration and the real values y_i . Function f(t) is the change amount at the t-th iteration. Overall, the objective function consists of a two order Taylor approximation expansion of the loss function and the regularization term $(\Omega(f_t))$, which penalize the complexity of the model and prevent overfitting of the model. Compared to traditional GBDT method, XGBoost method has the following advantages: (1) effectively handle missing values; (2) prevent overfitting; (3) reduce computing time by using parallel and distributed computing methods.

Since GEOS-Chem model-to-measurement discrepancy is usually site-specific, we train a separate XGBoost model for each site. Similar to the method of Keller et al. (2021), we use a full seasonal cycle of hourly measurements in 2019 at each site as the learning samples, and GEOS-Chem input of emissions and meteorological parameters, output concentrations of atmospheric constituents, and time information as training input data. In order to incorporate emissions and meteorological factors that affect O₃ production properly, we have included the GEOS-Chem

simulated concentrations of 43 atmospheric chemical constituents, emissions of 21 atmospheric chemical constituents, 10 meteorological parameters, and 4 time parameters (e.g., hour, day, month, and year) into the data training. All these training input data are summarized in Table S1 and have been standardized. We choose a learning rate of 0.35, maximum tree depth of 6, L1 and L2 regularization terms of 0 and 1, the loss function of mean square, and evaluation metric of root-mean-square error (RMSE) in the data training.

We use k-fold cross-validation method to test the performance of the XGBoost model (k=1 - n). First, all sample data are randomly and uniformly divided into k groups, where one group is taken as the test dataset and the remaining k-1 groups are taken as the training dataset. We then start to train the model and use the test dataset to evaluate the performance of the trained model. We repeated this process for k times by using different groups of dataset as the test data. The training model is finally determined if all the k groups of experiments show similar performances. This method can obtain a stability and robustness of XGBoost model and avoid overfitting. In this study, a10-fold cross-validation method is applied, i.e., we divide the O₃ measurements in 2019 into 10 groups of sub data: the training dataset accounts for 90% and the test dataset accounts for the remaining 10% of the total sample data. We also attempted to use 60% and 80% of the sample data as the training dataset and do not find significant influences on the results, indicating the robustness of the XGBoost training model.

2.4 Quantifying meteorological and emissions contributions

We have used the GEOS-Chem only and the combination of GEOS-Chem and XGBoost model (hereafter GEOS-Chem-XGBoost) to quantify the contributions of meteorology and anthropogenic emissions to the unexpected surface O₃ enhancements over the SCB in 2020. For the GEOS-Chem method, since the anthropogenic emissions are fixed, the simulated O₃ differences between 2020 and 2019 can be attributed to changes in meteorological conditions, which is calculated as,

$$G_{-}Met = G_{2020} - G_{2019} \tag{2}$$

26 The contribution of anthropogenic emissions changes can then be quantified as,

$$G_Emis = (Meas_{2020} - Meas_{2019}) - G_Met$$
 (3)

where G_Met and G_Emis represent the meteorology and anthropogenic emissions contributions, respectively. $Meas_{2019}$ and $Meas_{2020}$ represent O_3 measurements in 2019 and 2020, respectively. G_{2019} and G_{2020} represent GEOS-Chem O_3 simulations in 2019 and 2020, respectively.

Since the GEOS-Chem-XGBoost model has corrected the GEOS-Chem model-to-measurement discrepancy, we assume it can provide accurate predictions to the surface O₃ measurements. For predicting O₃ evolutions in 2020, all input parameters except anthropogenic emissions fed into each GEOS-Chem-XGBoost model are updated to match the measurements in 2020, but anthropogenic emissions are fixed at the 2019 levels. As a result, the differences between the GEOS-Chem-XGBoost predictions for 2020 and the 2020 measurements are attributed to the changes in anthropogenic emissions (equation (4)). The meteorology induced contributions are then obtained as equation (5) by subtracting the anthropogenic emissions induced contributions.

$$XG_Emis = Meas_{2020} - XG_{2020}$$
 (4)

$$40 XG_Met = (Meas_{2020} - Meas_{2019}) - XG_Emis (5)$$

where the acronyms are similar to those in equations (1) and (2) but for GEOS-Chem-XGBoost method. By correcting the model-to-measurement discrepancy, GEOS-Chem-XGBoost model is

- expected to provide a more accurate O₃ sensitivity to changes in both meteorology and
- 2 anthropogenic emissions.

2.5 Health risks evaluation

We have assessed the total premature mortalities including all nonaccidental causes, hypertension, CVD, RD, COPD, and stroke attributed to ambient O₃ exposure in all cities over the SCB in 2019 and 2020. We first calculated the O₃ induced daily premature mortalities based on the exposure-response relationship described in Cohen et al. (2004), which have been used in many subsequent studies (Anenberg et al., 2010; Liu et al., 2018; Wang et al., 2021). We then added up the daily premature mortalities within May-June or the whole year to get the total O₃ induced premature mortalities in the respective periods. The population data used in this study include all age groups, which may result in higher daily mortalities than expected (Liu et al., 2018; Wang et al., 2021). According to Cohen et al. (2004), the daily premature mortalities attributable to ambient O₃ exposure can be estimated by the following equation (Cohen et al., 2004),

$$\Delta x = \begin{cases} 0, & (if \quad C_{meas} - C_{thres} \leq 0) \\ C_{meas} - C_{thres}, & (if \quad C_{meas} - C_{thres} \geq 0) \end{cases}$$
 (6)

$$\Delta M = y_0 [1 - \exp(-\beta \Delta x)] \times Pop \tag{7}$$

where ΔM represents the daily premature mortalities due to ambient O_3 exposure. The city representative daily mean O_3 concentration C_{meas} is an average of all measurements in each city. Variable y_0 is the daily baseline mortality rate for each disease averaged from all ages and genders. We follow the method of Wang et al. (2021) and use the daily y_0 value for each disease from the latest China Health Statistical Yearbook in 2018. β represents the increase in daily mortality as a result of each $10 \,\mu\text{g/cm}^3$ ($\sim 5.1 \,\text{ppbv}$) increase in daily O_3 concentration, which is often referred to as the concentration response function (CRF) in previous studies. We collected the CRF values straightly from those used in Yin et al. (2017) and Wang et al. (2021). Δx represents the incremental O_3 concentration relative to the threshold concentration C_{thres} of 35.1 ppbv, which are used following Lim et al. (2012) and Liu et al. (2018). Pop represents the population exposed in the ambient O_3 pollution, which are available from the seventh nationwide population census in 2020 provided by National Bureau of Statistics of China. The daily y_0 and β values for all non-accidental causes, hypertension, CVD, RD, COPD, and stroke are summarized in Table S2.

3 Unexpected surface O₃ enhancements over the SCB in 2020

Figures 1(a)-(b) show the May-June mean MDA8 O₃ concentrations at all measurement sites over the SCB in 2019 and 2020. The May-June mean MDA8 O₃ concentrations averaged over all cities in the SCB region in 2019 and 2020 are 48.1 ppbv and 58.3 ppbv, which are 11.0 ppbv lower and 1.2 ppbv higher than those averaged over all Chinese cities in the same period, respectively. As the most densely populated and highly industrialized region in western China, the land use, industrialization, infrastructure construction, and urbanization over the SCB have expanded rapidly in recent years, resulting in the highest anthropogenic emissions of O₃ precursors and highest surface O₃ levels in the region (Figure S2). Although the O₃ levels in the SCB cities cluster are lower than those in the three most developed city clusters in eastern China, i.e., the BTH, the Fenwei Plain (FWP), and the YRD city clusters, the SCB region has been classified by the MEE as a newly

pollution region for O₃ mitigation (Sun et al., 2021). Situated in the basin with stationary meteorological fields combined with high anthropogenic emissions, the SCB cities cluster is potential to become a new region with frequent high-O₃ events after BTH, FWP, and YRD.

We find significant O_3 enhancements by 10.2 ± 0.8 ppbv (23.4%) (mean $\pm 1\sigma$ standard deviation) averaged over all cities in the SCB in May-June 2020 vs. 2019 levels (Figure 1(c)). The largest enhancements are observed in the most densely populated areas around the megacities Chongqing and Chengdu (11.8 \pm 0.6 ppbv (26.0%)). These year-to-year O_3 enhancements over the SCB are record high in the 2015-2020 period, following an increasing change rate of 1.2% yr⁻¹ from 2015 to 2017 and then a decreasing change rate of -0.7% yr⁻¹ from 2017 to 2019. These surface O_3 enhancements mainly reflect regional emissions and meteorology changes in the SCB and surrounding regions since the lifetimes of O_3 and most of its precursors are too short to undergo long range transport.

The significant O_3 enhancements over the SCB in May-June 2020 vs. 2019 are opposite to the overall decrease in surface O_3 levels across China in the same period (Figure 1 (d)). After a continuous increase in surface O_3 levels from 2013 to 2019 by approximately 5% yr⁻¹ (Figure 1(d)), the MDA8 O_3 averaged over all cities outside the SCB across China in May-June 2020 vs. 2019 levels showed a significant reduction of 5.3 \pm 0.5 ppbv (8.3%). Such O_3 reductions are widespread in the eastern China, especially in the BTH, FWP, and YRD regions.

4 Model performance assessment

We use the metrics of normalized root-mean-square error (NRMSE), normalized mean bias (NMB), and Pearson correlation coefficient (R) to assess the performance of the GEOS-Chem-XGBoost model. For each measurement site, we analysed these metrics for both training (blue) and test (red) datasets as shown in Figure S3. We define the NRMSE as the RMSE normalized by the difference between the 95th and 5th percentile concentrations, and NMB as the mean bias normalized by average concentration at the given measurement site. The formulas of above metrics are summarized in Section S1.

The GEOS-Chem-XGBoost model predictions for surface O_3 over the SCB show no bias when evaluated against the training data (NMB=0.01), NRMSEs of less than 0.1, and R between 0.93 – 1.0. Compared to the training data, the performances on the test data show a higher variability, with an average NMB of -0.04, NRMSE of 0.22, and R of 0.83. We find no significant difference in prediction performance between clean (less than the C_{thres} defined in section 2.5) and polluted measurement sites. A number of factors likely contribute to relative poorer statistical results at some sites such as Ganzizhou, Leshan, and Suining. On the one hand, the training data of these sites may include certain temporal events that are not easily generalizable, such as unusual emissions activity (e.g., BB, fireworks, closure of nearby point source) or weather patterns that are not properly observed, which might be prone to overfitting. In addition, the differences in surface O_3 variabilities between the training data and the test data at these sites are relative larger than other sites, which can contribute to a relative poorer performance.

We use the SHapely Additive exPlanations (SHAP) approach to understand how the GEOS-Chem-XGBoost model uses the input variables to make a prediction. The SHAP approach is based on game-theoretic Shapely values and represents a measure of each predictor's responsibility for a change in the model prediction (Lundberg et al., 2017). The SHAP values are computed separately

for each individual model prediction, which offer detailed insight into the importance of each input variable to this prediction while also consider the role of variables interactions (Lundberg et al., 2020; Keller et al., 2021). Figure 2 shows the SHAP value distribution for all O₃ predictors averaged over all cities in the SCB. The results show that any variables that are expected to be associated with O₃ formation affect model O₃ prediction. Generally, the temperatures (at the surface, 2 m height, and 10 m height) are the most important predictors for the GEOS-Chem model-to-measurement discrepancy over the SCB, followed by the uncorrected GEOS-Chem simulated O3, reactive nitrogen (e.g., NO₂, Peroxyacetyl nitrate (PAN)), atmospheric oxidants (O_x, hydrogen peroxide (H₂O₂)), fine aerosol, VOCs (Isoprene, C₃H₈), hour of the day, and meteorological variables including horizontal and vertical wind speeds (u10m, v10m). All of these factors have tight connections to surface O₃ formation over the SCB and it is thus not surprising that the GEOS-Chem

model-to-measurement discrepancies are most sensitive to them (Seinfeld and Pandis, 2016).

We have compared the performances of GEOS-Chem and GEOS-Chem-XGBoost in capturing the measured surface O₃ levels. Figure 3 (a) shows the time series of measured and models predicted O₃ concentrations averaged over all cities in the SCB region. Figure 3 (b) shows histogram of the differences between the GEOS-Chem-XGBoost predictions and the measurements. The GEOS-Chem simulations generally capture the daily variability of MDA8 O₃ over the SCB, but they show high MB of 7.8 ppbv (17.5%) and RMSE of 15 ppbv across all measurement sites within the SCB region. The discrepancy can be mainly attributed to uncertainties in the horizontal transport and vertical mixing schemes simulated by the GEOS-Chem model at a relatively coarse spatial resolution compared to the measurements at a single point, and also associated with the errors in emission estimates, chemical mechanism, and sub-grid-scale local meteorological processes. Especially errors in high SHAP values of O₃ predictors are more likely to result in large model-to-measurement discrepancy. For example, GEOS-Chem model overestimates the correlations between surface O₃ concentration and temperature (Figure S5 (a)), indicating that this overestimation of O₃-to-temperature sensitivity is one of the major factors contributing to higher GEOS-Chem model O₃ predictions.

By iteratively training and correcting the GEOS-Chem model-to-measurement discrepancy in O₃-to-temperature sensitivity, the correlations between surface O₃ concentration and temperature predicted by the GEOS-Chem-XGBoost model were in good agreement with the measurements (Figure S5 (a)). With respect to the performance of reproducing the sensitivities of O₃ to other meteorological parameters such as humidity, cloud fraction, and precipitation, the GEOS-Chem-XGBoost model is also better than the GEOS-Chem (Figure S5 (b)-(d)). After correcting the errors in all O₃ predictors, the GEOS-Chem-XGBoost model significantly improves the prediction of surface O₃ concentrations in all cities over the SCB compared to the GEOS-Chem (Figure S6). It shows a MB of 0.5 ppbv and RMSE of 0.3 ppbv for all O₃ measurements in 2019 over the SCB. As a result, the overall GEOS-Chem-XGBoost model performance is acceptable and can support further investigation of the drivers of the unexpected surface O₃ enhancements over the SCB in May-June 2020.

5 Attribution

5.1 Separation of meteorological and anthropogenic emissions contributions

42 We attribute quantitatively the surface O₃ enhancements in May-June 2020 over the SCB to

changes in anthropogenic emissions and meteorological conditions according to equations (3) and (4). Differences between the measured and GEOS-Chem-XGBoost predicted O_3 in May-June 2020 represent the anthropogenic emissions-induced O_3 changes in 2020 vs. 2019, as indicated by the shadings in Figure 4(a). Figure 4(b) summarizes the mean contributions driven by changes in anthropogenic emissions and meteorological conditions. Due to different change rates in anthropogenic emissions in May and June in 2020 (see section 5.3), the changes in anthropogenic emissions caused an overall increase in surface O_3 level in May but a reduction in surface O_3 level in June (Figure 4 (a)). For the May-June mean contributions averaged over all cities in the SCB, changes in anthropogenic emissions caused 0.9 ± 0.1 ppbv of O_3 reduction and changes in meteorology caused 11.1 ± 0.7 ppbv of O_3 increase, which correspond to -8.0% and 108% of relative contributions to the total O_3 enhancement (10.2 ± 0.8 ppbv) over the SCB in May-June 2020, respectively. As a result, the unexpected O_3 enhancements over the SCB in 2020 were attributed to that the anthropogenic emissions induced O_3 reductions are dominantly overwhelmed by the meteorology induced O_3 increases.

We compare the meteorology and anthropogenic emissions induced contributions to the unexpected surface O₃ enhancements estimated by the GEOS-Chem-XGBoost model with those by the GEOS-Chem model only (Figure 4 (b)). Both methods agree that changes in meteorology play a significant role in interpreting the O₃ enhancements, while the absolute magnitudes differ slightly with each other. For example, the anthropogenic emissions induced O₃ reduction calculated with the GEOS-Chem model only is 0.94 ppbv, while the value for GEOS-Chem-XGBoost model is 1.36 ppbv. By taking the subtraction in equation (1) and the average over all cities, the propagation of systematic model discrepancies that are common to all measurements sites was effectively minimized, which can mitigate the difference in attribution results between the GEOS-Chem and GEOS-Chem-XGBoost methods. However, as demonstrated in Figure S6, model discrepancies may differ from one region to the other and from time to time. Therefore, the GEOS-Chem-XGBoost approach is expected to provide a more accurate and consistent estimate on O₃ change attribution.

5.2 Meteorological contribution

Figure 5 shows the terrain elevations and May-June mean wind fields and surface pressures over the SCB and surrounding regions. The terrain altitudes are at a resolution of 3 × 3 arc-minute, which indicates a rapid change in altitude from the Tibetan Plateau (4.0 –5.0 km) and Yunan-Kweichou Plateau (2–3 km) to the SCB (0.5 km). The SCB is located in the saddle between the Tibetan and Yunnan-Kweichou Plateau (Chen et al., 2009; Sun et al., 2021b). Figure 5 (b) are the May-June mean wind fields at 500 m overlaid with surface pressure available from GEOS-FP fields at 0.25 °× 0.3125 ° resolution. In May-June, the western Pacific Subtropical High originated from the middle region of the Tibetan Plateau shifts westward to the west of the SCB (Chen et al., 2009). The southwesterly East Asian summer monsoon generates a cyclonic pattern over the southeast part of the SCB. Driven by large scale circulations, southwesterly flow enters the east part of the SCB near the northwest edge of the Yunnan-Kweichou Plateau, while strong northwesterly flow enters the SCB near the east edge of the Tibetan Plateau. The interaction of these two flows results in a convergent zone of northward jet stream over the east part of the SCB due to the westward shift of the Western Pacific Subtropical High and the blocking effect of topography. Furthermore, strong instability of vertical convection could originate over the basin and move toward the east part of the

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

2627

28

29

30

31

32

33

34

35

36 37

38

39

40

41

42

SCB as dry air continuously entered the upper layer over the SCB (Chen et al., 2009). This process will continuously intensify the cyclonic vorticity over the SCB, and make it a favorable region for stationary low-level vortices, which tend to trap air pollutants within the SCB region and is referred to as the Southwest Vortex (Chen et al., 2009; Liu et al., 2003).

Figure 6 shows the May-June mean differences in potential vorticity (PV), precipitation, temperature, specific humidity, cloud fraction, and PBLH between 2020 and 2019. In May-June 2020, the northwest, central western and southern China experienced anomaly strong or even record-breaking droughts (https://quotsoft.net/air/), leading to significant increases in temperature and decreases in precipitation, specific humidity and cloud fractions compared to the 2019 levels. These meteorological conditions could enhance biogenic VOCs emissions, speed up O₃ chemical production, and the aforementioned basin effect inhabit the ventilation of O₃ and its precursors, which contributed to the O₃ enhancements over the SCB. Although higher PBLH over the SCB in May-June 2020 vs. 2019 could reduce surface O₃ levels by diluting O₃ and its precursors into a larger volume of air, this reduction effect was overwhelmed by its enhancement effect, i.e., higher PBLH enhanced downward transport of O₃ from the upper troposphere. Indeed, we observed an increase in downward potential vorticity (PV) over the SCB in May-June 2020 vs. 2019 (Figure 6 (a)). It is worth noting that, with similar meteorological conditions in May-June 2020 vs. 2019, the O₃ enhancements were not observed in the northwest China such as Xinjiang and Inner Mongolia provinces, and southern China such as the Pearl River Delta (PRD) region, which is also one of the nine well-developed city clusters in China with severe air pollution. This can be partly attributed to low anthropogenic emissions of O₃ precursors in northwest China (Lu et al. 2019; Zheng et al. 2018); and that strong exchange between the land and sea in the coastal regions driven by the summer monsoon facilitates the ventilation of O₃ and its precursors in the PRD region. Furthermore, the meteorology induced O₃ enhancements are probably overwhelmed by the anthropogenic emissions induced O₃ reductions in the aforementioned two regions.

5.3 Emissions contribution

To suppress the spread of coronavirus pandemic 2019 (COVID-19) across China and above, the Chinese government sealed off several cities starting in January 2020; this included closing local businesses and halting public transportation at an unprecedented scale (Steinbrecht et al., 2021; Liu et al., 2020). These prevention measures quickly spread nationwide. Although the COVID-19 lockdowns in all cities have been removed before May, there are still restrictions on public transportation, businesses, social activities and industrial manufactures, which could cause domestic anthropogenic emissions reductions in both HCHO and NOx. Furthermore, the MEE has implemented The 2020 Action Plan on VOCs Mitigations in 2020. This Action Plan issues a number of control measures including implementation of stringent VOCs emission standards, replacement of raw and auxiliary materials with low VOCs content, and mitigation of unorganized emissions. Driven by above two factors, the TROPOMI observed tropospheric HCHO and NO₂ over China in May-June 2020 vs. 2019 reduced by $2.0 \pm 0.3\%$ (averaged for all Chinese cities) and $1.1 \pm 0.2\%$, respectively. Due to the relative short lifetime of both HCHO and NO2 in troposphere, these reductions mostly reflect local emissions changes. These reductions in domestic anthropogenic emissions dominated the significant reduction of summertime MDA8 O₃ across China in 2020 vs 2019.

We have used the HCHO/NO2 ratios following the method of Sun et al. (2018) to investigate the O₃ production regime over the SCB region. The results show that the satellite observations of HCHO/NO2 ratios in May-June in most cities over the SCB have indicated a shift toward high values from 2019 to 2020 but the O₃ chemical sensitivity in 2020 still lies within the transitional regime (Jin et al., 2015; Jin et al., 2017; Figure S7). Meanwhile, the O₃ chemical sensitivity in May 2020 is similar to that in June, indicating that the O₃ variability in May-June 2020 is sensitive to both NO_x and VOCs. The recently available Chinese anthropogenic emissions statistic data provided by the MEE show that the anthropogenic VOCs over the SCB has decreased by 5.0% and 3.5% in May and June in 2020 relative to the 2019 level, respectively. The anthropogenic NO_x in the same period has increased by 1.5% and decreased by 1.7%, respectively (Zheng et al., 2021). The increase in anthropogenic NO_x in May 2020 vs. 2019 is attributed to an increase in NO_x emission from power plant sector, which was not affected by the post-lockdown restrictions for suppressing the spread of COVID-19 (Table S3). For the May-June aggregation, the anthropogenic VOCs and NO_x over the SCB have decreased by 4.3% and 0.3%, respectively (Zheng et al., 2021). These independent analyses on anthropogenic emissions explain the different predicted O3 changes due to anthropogenic emissions alone in May (increase) versus June (decrease) in the SCB.

In contrast to the widespread reductions in both HCHO and NO_2 across the BTH, FWP, and YRD regions, we find notable increases in both HCHO and NO_2 in the SCB in May-June 2020 vs. 2019 levels. The tropospheric HCHO and NO_2 columns averaged over all cities in the SCB region have been increased by $(2.8 \pm 0.3\%)$ and $(5.1 \pm 0.5\%)$ in 2020 vs. 2019 levels, respectively. Since both anthropogenic VOCs and NO_x emissions in the SCB showed decreasing change rates in May-June 2020 vs. 2019, these regional increases in both HCHO and NO_2 could thus be attributed to natural emissions enhancements in both VOCs and NO_2 in the SCB. Indeed, natural emissions of biogenic VOCs and soil NO_x calculated online in the GEOS-Chem model show increasing change rates in May-June 2020 vs. 2019 in the SCB and surrounding regions (Figure 7). These enhanced biogenic VOCs and NO_x emissions are most likely driven by the hotter and dryer meteorological conditions in the SCB and surrounding regions (Figure 7).

Finally, we concluded that natural emissions enhancements of both NO_x and VOCs induced by the unexpected meteorology could be accounted for the O_3 enhancements in May-June 2020 over the SCB. In present work, we were not able to determine which specific VOCs species are the most effective for O_3 enhancements and cannot quantify the relative contributions of VOCs and NO_x enhancements to the O_3 enhancements in the SCB. A series of sensitivity studies might be able to address this important issue, but this is beyond the scope of present work.

6 Health risks for the O₃ enhancements over the SCB

Figure 8 presents the total premature mortalities from all non-accidental causes, hypertension, CVD, RD, COPD, and stroke attributable to ambient O₃ exposure in all cities over the SCB during May-June in 2019 and 2020. The statistical results for each city in 2019 and 2020 are summarized in Table S4 and S5, respectively. The surface O₃ enhancements over the SCB in May-June 2020 vs. 2019 results in dramatically higher health risks. The estimated total premature mortalities from all non-accidental causes due to the surface O₃ enhancements in May-June 2020 over the SCB is 5455, which is 89.8% higher than that in the same period in 2019 (i.e., 2874). All above O₃ induced diseases over the SCB have significant increases in total mortalities in May-June 2020 vs. 2019.

The highest health risk among these diseases is from CVD which is 741 in May-June 2019, followed by RD (236), COPD (231), and hypertension (223). This O₃ induced health risk rank over the SCB is consistent with those in the YRD, BTH, and PRD in previous studies (Liu et al., 2018; Lu et al., 2020; Yin et al., 2017; Wang et al., 2021). In May-June 2020, total mortalities from CVD, RD, COPD, hypertension, and stroke over the SCB reached up to 1405, 450, 439, 418, and 46, respectively, due to significant O₃ enhancements. The change rates for these diseases are 89.6, 90.7, 90.1, 87.4, and 91.7%, respectively.

From a whole year view, the estimated total premature mortalities from all non-accidental causes due to surface O_3 exposure over the SCB in 2019 and 2020 are 16,772 and 18,301, respectively (Tables S4 and S5). All O_3 induced diseases within May-June 2019 account for about $\sim 17.0\%$ of those in the whole year 2019, and this percentage reaches up to $\sim 30.0\%$ in 2020 (Figure S8). The total premature mortalities from all non-accidental causes due to surface O_3 exposure over the SCB has increased by 1528 in the whole year 2020 vs. 2019 (Figure S9), which is 40.8% lower than that within May-June 2020 vs. 2019 (i.e., 2581). This indicates that the O_3 level over the SCB showed an overall decreasing change rate in all months except May-June in 2020 vs. 2019, which resulted in a decrease (by 1053) in O_3 induced diseases in the period.

We further investigated the O₃ induced diseases in the two most densely populated cities over the SCB (i.e., Chengdu and Chongqing) during May-June in 2019 and 2020. The premature mortalities from all O₃ induced diseases in 2020 vs. 2019 in each city are dependent on regional population, surface O₃ level, and enhancement level (equation (6)). With largest populations and highest O₃ enhancements, the estimated total premature mortalities in Chengdu and Chongqing accounted for 46.9% of total O₃ induced mortalities over the SCB during May-June 2020 (Figure 8 (b)-(c)). Since the O₃ level and enhancement in Chengdu are larger than those in Chongqing, the total O₃ induced mortalities in Chengdu are larger than those in Chongqing, though the population in Chengdu is lower than that in Chongqing. The change rates for all O₃ induced diseases in Chengdu are about 75% and in Chongqing are about 160% during May-June 2020 vs. 2019, which are much higher than the enhancement percentages in the two cities (29.9 %). In order to reduce the O₃ induced health risk, strident O₃ control policies are necessary in densely populated cities.

7 Conclusions

Understanding the drivers and health risks of surface high O_3 events has a strong implication for O_3 mitigation purpose. After a continuous increase in surface O_3 level from 2013 to 2019, the overall summertime O_3 concentration across China showed a significant reduction in 2020. In contrast to this overall reduction in surface O_3 level across China, unexpected surface O_3 enhancements of 10.2 ± 0.8 ppbv (23%) were observed in May-June 2020 vs. 2019 over the Sichuan basin (SCB), China. In this study, we have used high resolution nested-grid GEOS-Chem simulation, the eXtreme Gradient Boosting (XGBoost) machine learning method and the exposure—response relationship to determine the drivers and evaluated the health risks of the unexpected surface O_3 enhancements.

By iteratively training and correcting the GEOS-Chem model-to-measurement discrepancies, the GEOS-Chem-XGBoost model significantly improves the prediction of surface O_3 concentrations compared to the GEOS-Chem. It shows a MB of 0.5 ppbv and RMSE of 0.3 ppbv against all O_3 measurements over the SCB. As a result, the overall GEOS-Chem-XGBoost model

10

1 performance is acceptable and can support further investigation of the drivers of the unexpected 2 surface O₃ enhancements over the SCB in May-June 2020. The results show that changes in 3 anthropogenic emissions caused 0.9 ± 0.1 ppbv of O_3 reduction and changes in meteorology caused 4 11.1 ± 0.7 ppbv of O_3 increase. The meteorology-induced surface O_3 increase is mainly attributed 5 to significant increases in temperature and downward potential vorticity, and decreases in 6 precipitation, specific humidity and cloud fractions over the SCB and surrounding regions in 2020 7 vs. 2019 levels. These changes in meteorology combined with the complex basin effect enhance 8 downward transport of O₃ from the upper troposphere and biogenic emissions of VOCs and NO₃,

speed up O₃ chemical production, and inhabit the ventilation of O₃ and its precursors, and therefore

- 11 The unexpected surface O₃ enhancements over the SCB in May-June 2020 vs. 2019 result in 12 dramatically higher health risks. The estimated total premature mortalities due to the unexpected 13 surface O₃ enhancements over the SCB in May-June 2020 is 5455, which is 89.8% higher than that 14 in the same period in 2019 (i.e., 2874). We further investigated the O3 induced diseases in the two 15 most densely populated cities over the SCB (i.e., Chengdu and Chongqing) during May-June in 2019 and 2020. With largest populations and highest O₃ enhancements, the estimated total 16 17 premature mortalities in Chengdu and Chongqing accounted for 46.9% of total O₃ induced 18 mortalities over the SCB. The change rates for all O₃ induced diseases in Chengdu are about 75% 19 and in Chongqing are about 160% during May-June 2020 vs. 2019, which are much higher than the 20 enhancement percentages in the two cities (29.9 %). In order to reduce the O₃ induced health risks, 21 strident O₃ control policies are necessary in densely populated cities.
- 22 Code and data availability. Surface O3 measurements over the SCB are from
- http://www.cnemc.cn/en/. All other data are available on request of YS (ywsun@aiofm.ac.cn)
- 24 Author contributions. YS designed and wrote the paper. HY carried out the GEOS-Chem
- 25 simulations and GEOS-Chem-XGBoost training and evaluation. XL designed the concept of health
- 26 risk evaluation and revised the manuscript. BZ constructed the latest MEIC emission inventory. JN,
- 27 MP, CL, and YT provided constructive comments.

account for the surface O₃ enhancements over the SCB.

- 28 Competing interests. None.
- 29 Acknowledgements. This work is supported by the Youth Innovation Promotion Association, CAS
- 30 (No.2019434) and the Sino-German Mobility programme (M-0036).

31 References

- 32 Atkinson, R.: Atmospheric chemistry of VOCs and NO_x, Atmos. Environ., 34, 2063–2101, https://doi.org/10.1016/S1352-2310(99)00460-4, 2000.
- Anenberg, S. C., Horowitz, L. W., Tong, D. Q., and West, J. J.: An Estimate of the Global Burden of
 Anthropogenic Ozone and Fine Particulate Matter on Premature Human Mortality Using
- Atmospheric Modeling, Environ. Health Persp., 118, 1189–1195, 2010.
- 37 Akimoto, H., Mori, Y., Sasaki, K., Nakanishi, H., Ohizumi, T., and Itano, Y.: Analysis of monitoring data
- 38 of ground-level ozone in Japan for long-term trend during 1990-2010: Causes of temporal and
- 39 spatial variation, Atmos. Environ., 102, 302–310, https://doi.org/10.1016/j.atmosenv.2014.12.001,

- 1 2015.
- 2 Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y.,
- 3 Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated
- 4 meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073-23095, 2001.
- Bian, H. S., and Prather, M. J.: Fast-J2: Accurate simulation of stratospheric photolysis in global chemical
 models, J. Atmos. Chem., 41, 281-296, 2002.
- Cooper O. R. Detecting the fingerprints of observed climate change on surface ozone variability. Sci Bull
 2019;64:359–60.
- 9 Cohen, A. J., Anderson, H. R., Ostro, B., Pandey, K. D., Krzyzanowski, M., Künzli, N., Gutschmidt, K.,
- 10 Pope, A., Romieu, I., Samet, J. M., and Smith, K.: Urban air pollution, in: Comparative
- 11 quantification of health risks, Global and regional burden of disease attributable to selected major
- 12 risk factors, Volume1, World Health Organization, Geneva, 2004.
- 13 Chen, D., Wang, Y., McElroy, M. B., He, K., Yantosca, R. M., and Le Sager, P.: Regional CO pollution
- and export in China simulated by the high-resolution nested-grid GEOS-Chem model, Atmos. Chem.
- 15 Phys., 9, 3825-3839, 2009.
- Eastham, S. D., Weisenstein, D. K., and Barrett, S. R. H.: Development and evaluation of the unified
- tropospheric-stratospheric chemistry extension (UCX) for the global chemistry-transport model
 GEOS-Chem, Atmos. Environ., 89, 52-63, 2014.
- 19 Fu, T. M., Zheng, Y. Q., Paulot, F., Mao, J. Q., and Yantosca, R. M.: Positive but variable sensitivity of
- August surface ozone to large scale warming in the southeast United States, Nat. Clim. Change, 5,
- 21 454–458, https://doi.org/10.1038/Nclimate2567, 2015.
- 22 Fleming, Z. L.; Doherty, R. M.; Von Schneidemesser, E.; Malley, C. S.; Cooper, O. R.; Pinto, J. P.; Colette,
- A.; Xu, X.; Simpson, D.; Schultz, M. G.; Lefohn, A. S.; Hamad, S.; Moolla, R.; Solberg, S.; Feng,
- 24 Z. Tropospheric ozone assessment report: Present-day ozone distribution and trends relevant to
- 25 human health. Elementa: Sci. Anthrop. 2018, 6, 12.
- 26 Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily, monthly, and annual burned area
- using the fourth-generation global fire emissions database (GFED4), J. Geophys. Res.-Biogeo., 118,
- 28 317-328, 10.1002/jgrg.20042, 2013.
- 29 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.:
- The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended
- 31 and updated framework for modeling biogenic emissions, Geosci. Model. Dev., 5, 1471-1492, 2012.
- 32 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global
- 33 terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from
- 34 Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
- 35 Hoesly, R. M., Smith, S. J., Feng, L. Y., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J.,
- Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J., Li, M.,
- 37 Liu, L., Lu, Z. F., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750-2014)
- 38 anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data
- 39 System (CEDS), Geosci. Model. Dev., 11, 369-408, 2018.
- 40 He, J., Gong, S., Yu, Y., Yu, L., Wu, L., Mao, H., Song, C., Zhao, S., Liu, H., Li, X., and Li, R.: Air
- 41 pollution characteristics and their relation to meteorological conditions during 2014–2015 in major
- 42 Chinese cities, Environ. Pollut., 223, 484–496, https://doi.org/10.1016/j.envpol.2017.01.050, 2017.
- 43 Im, U., Markakis, K., Poupkou, A., Melas, D., Unal, A., Gerasopoulos, E., Daskalakis, N., Kindap, T.,
- 44 and Kanakidou, M.: The impact of temperature changes on summer time ozone and its precursors

- in the Eastern Mediterranean, Atmos. Chem. Phys., 11, 3847–3864, https://doi.org/10.5194/acp-11 3847-2011, 2011.
- Jin, X., and T. Holloway (2015), Spatial and temporal variability of ozone sensitivity over China observed
 from the Ozone Monitoring Instrument, J. Geophys. Res. Atmos., 120, 7229–7246,
 doi:10.1002/2015JD023250.
- Jin, X., Fiore, A. M., Murray, L. T., Valin, L. C., Lamsal, L. N., Duncan, B., Tonnesen, G. S.: Evaluating
 a space-based indicator of surface ozone-NOx-VOC sensitivity over midlatitude source regions and
 application to decadal trends. J Geophys.Res.-Atmos., 122, 10, 439–10,
 https://doi.org/10.1002/2017JD026720, 2017.
- Kalabokas, P. D., Thouret, V., Cammas, J. P., Volz-Thomas, A., Boulanger, D., and Repapis, C. C.: The
 geographical distribution of meteorological parameters associated with high and low summer ozone
 levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo case),
 Tellus B, 67, 27853, https://doi.org/10.3402/tellusb.v67.27853, 2015.
- Keller, C. A.; Evans, M. J.; Knowland, K. E.; Hasenkopf, C. A.; Modekurty, S.; Lucchesi, R. A.; Oda, T.;
 Franca, B. B.; Mandarino, F. C.; Díaz Suárez, M. V.; Ryan, R. G.; Fakes, L. H.; Pawson, S., Global
 impact of COVID-19 restrictions on the surface concentrations of nitrogen dioxide and ozone.
 Atmos. Chem. Phys. 2021, 21 (5), 3555-3592.
- Lundberg, S. M. and Lee, S.-I.: A unified approach to interpreting model predictions, Adv. Neural Inf.
 Process. Syst., 30, 4768–4777, 2017.
- Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J.,
 Bansal, N., and Lee, S.-I.: From local explanations to global understanding with explainable AI for
 trees, Nat. Mach. Intell., 2, 56–67, https://doi.org/10.1038/s42256-019-0138-9, 2020.
- Li, M., Zhang, Q., Kurokawa, J., Woo, J. H., He, K. B., Lu, Z. F., Ohara, T., Song, Y., Streets, D. G.,
 Carmichael, G. R., Cheng, Y. F., Hong, C. P., Huo, H., Jiang, X. J., Kang, S. C., Liu, F., Su, H., and
 Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international
 collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935-963, 2017.
- Liu, H. Y., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from Pb-210 and Be-7 on wet deposition
 and transport in a global three-dimensional chemical tracer model driven by assimilated
 meteorological fields, J. Geophys. Res.-Atmos., 106, 12109-12128, 2001.
- Lu, X., Hong, J. Y., Zhang, L., Cooper, O. R., Schultz, M. G., Xu, X. B., Wang, T., Gao, M., Zhao, Y. H.,
 and Zhang, Y. H.: Severe Surface Ozone Pollution in China: A Global Perspective, Environ. Sci.
 Tech. Let., 5, 487-494, 2018.
- Li, K.; Jacob, D. J.; Liao, H.; Qiu, Y.; Shen, L.; Zhai, S.; Bates, K. H.; Sulprizio, M. P.; Song, S.; Lu, X.;
 Zhang, Q.; Zheng, B.; Zhang, Y.; Zhang, J.; Lee, H. C.; Kuk, S. K., Ozone pollution in the North
 China Plain spreading into the late-winter haze season. Proceedings of the National Academy of
 Sciences 2021, 118 (10), e2015797118.
- Li, J., Wang, Z., Wang, X., Yamaji, K., Takigawa, M., Kanaya, Y., Pochanart, P., Liu, Y., Irie, H., Hu, B.,
 Tanimoto, H., and Akimoto, H.: Impacts of aerosols on summertime tropospheric photolysis
 frequencies and photochemistry over Central Eastern China, Atmos. Environ., 45, 1817–1829,
 https://doi.org/10.1016/j.atmosenv.2011.01.016, 2011.
- Liu, H. Y., Jacob, D. J., Bey, I., Yantosca, R. M., Duncan, B. N., and Sachse, G. W.: Transport pathways
 for Asian pollution outflow over the Pacific: Interannual and seasonal variations, J. Geophys. Res. Atmos., 108, 2003.
- 44 Lou, S. J., Liao, H., and Zhu, B.: Impacts of aerosols on surfacelayer ozone concentrations in China

- 1 through heterogeneous reactions and changes in photolysis rates, Atmos. Environ., 85, 123–138,
- 2 https://doi.org/10.1016/j.atmosenv.2013.12.004, 2014.
- 3 Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C. C., Häseler, R., Hu, M.,
- 4 Kita, K., Kondo, Y., Li, X., Lou, S. R., Nehr, S., Shao, M., Zeng, L. M., Wahner, A., Zhang, Y. H.,
- 5 and Hofzumahaus, A.: Observation and modelling of OH and HO₂ concentrations in the Pearl River
- 6 Delta 2006: a missing OH source in a VOC rich atmosphere, Atmos. Chem. Phys., 12, 1541–1569,
- 7 https://doi.org/10.5194/acp-12-1541-2012, 2012.
- 8 Li, J., Chen, X. S., Wang, Z. F., Du, H. Y., Yang, W. Y., Sun, Y. L., Hu, B., Li, J. J., Wang, W., Wang,
- 9 T.,Fu, P. Q., and Huang, H. L.: Radiative and heterogeneous chemical effects of aerosols on ozone
- and inorganic aerosols over East Asia, Sci. Total Environ., 622, 1327-1342,
- 11 https://doi.org/10.1016/j.scitotenv.2017.12.041, 2018.
- 12 Lelieveld, J. and Crutzen, P. J.: Influences of cloud photochemical processes on tropospheric ozone,
- Nature, 343, 227–233, https://doi.org/10.1038/343227a0, 1990.
- 14 Lee, Y. C., Shindell, D. T., Faluvegi, G., Wenig, M., Lam, Y. F., Ning, Z., Hao, S., and Lai, C. S.: Increase
- of ozone concentrations, its temperature sensitivity and the precursor factor in South China, Tellus
- 16 B, 66, 23455, https://doi.org/10.3402/tellusb.v66.23455, 2014.
- 17 Lin, J. T., Patten, K. O., Hayhoe, K., Liang, X. Z., and Wuebbles, D. J.: Effects of future climate and
- 18 biogenic emissions changes on surface ozone over the United States and China, J. Appl. Meteorol.
- 19 Climatol., 47, 1888–1909, https://doi.org/10.1175/2007jamc1681.1, 2008.
- 20 Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of 2013–2017
- trends in summer surface ozone in China, P. Natl. Acad. Sci. USA, 116, 422–427, 2019a.
- 22 Li, K., Jacob, D. J., Liao, H., Zhu, J., Shah, V., Shen, L., Bates, K. H., Zhang, Q., and Zhai, S.: A two-
- pollutant strategy for improving ozone and particulate air quality in China, Nat. Geosci., 12, 906–
- 24 910, https://doi.org/10.1038/s41561-019-0464-x, 2019b.
- 25 Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 Part 1: The complex
- and varying roles of meteorology, Atmos. Chem. Phys., 20, 6305–6321, https://doi.org/10.5194/acp-
- 27 20-6305-2020, 2020a.
- 28 Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 Part 2: The effects
- 29 of emission changes and implications for multi-pollutant control, Atmos. Chem. Phys., 20, 6323-
- 30 6337, https://doi.org/10.5194/acp-20-6323-2020, 2020b.
- 31 Lin, J. T., Mcelroy, M. B.:Impacts of boundary layer mixing on pollutant vertical profiles in the lower
- troposphere: Implications to satellite remote sensing, Atmospheric Environment, 2010, 44(14):
- 33 1726-1739.
- 34 Lu, X., Zhang, L., Chen, Y. F., Zhou, M., Zheng, B., Li, K., Liu, Y. M., Lin, J. T., Fu, T. M., and Zhang,
- 35 Q.: Exploring 2016-2017 surface ozone pollution over China: source contributions and
- 36 meteorological influences, Atmos. Chem. Phys., 19, 8339-8361, 2019a.
- 37 Lu, X., Zhang, L., Yue, X., Zhang, J., Jaffe, D. A., Stohl, A., Zhao, Y., and Shao, J.: Wildfire influences
- on the variability and trend of summer surface ozone in the mountainous western United States,
- 39 Atmos. Chem. Phys., 16, 14687–14702, https://doi.org/10.5194/acp-16-14687-2016, 2016.
- 40 Lu, X.; Zhang, L.; Wang, X.; Gao, M.; Li, K.; Zhang, Y.; Yue, X.; Zhang, Y., Rapid Increases in Warm-
- 41 Season Surface Ozone and Resulting Health Impact in China Since 2013. Environ. Sci. Tech. Let.
- 42 2020, 7 (4), 240-247.
- 43 Lu, X., Zhang, L., and Shen, L.: Meteorology and climate influences on tropospheric ozone: A review of
- 44 natural sources, chemistry, and transport patterns, Curr. Pollution. Rep., 5, 238-260,

- 1 https://doi.org/10.1007/s40726-019-00118-3, 2019b.
- 2 Liu, F., Page, A., Strode, S. A., Y Yoshida, Choi, S., & Zheng, B., et al. (2020). Abrupt declines in
- 3 tropospheric nitrogen dioxide over china after the outbreak of covid-19. Science Advances, 4 eabc2992.
- 5 Liu, H., Liu, S., Xue, B., Lv, Z., Meng, Z., Yang, X., Xue, T., Yu, Q., and He, K.: Ground-level ozone
- 6 pollution and its health impacts in China, Atmos. Environ., 173, 223-230,
- 7 https://doi.org/10.1016/j.atmosenv.2017.11.014, 2018.
- 8 Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adairrohani, H., Almazroa, M. A., Amann,
- 9 M., Anderson, H. R., and Andrews, K. G.: A comparative risk assessment of burden of disease and
- 10 injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic
- analysis for the Global Burden of Disease Study 2010, Lancet, 380, 2224–2260, 2012.
- 12 Philip, S., Martin, R. V., and Keller, C. A.: Sensitivity of chemistry-transport model simulations to the
- duration of chemical and transport operators: a case study with GEOS-Chem v10-01, Geosci. Model
- Dev., 9(5), 1683-1695. https://doi.org/10.5194/gmd-9-1683-2016, 2016.
- 15 Streets, D. G., Canty, T., Carmichael, G. R., de Foy, B., Dickerson, R. R., Duncan, B. N., Edwards, D. P.,
- 16 Haynes, J. A., Henze, D. K., Houyoux, M. R., Jacob, D. J., Krotkov, N. A., Lamsal, L. N., Liu, Y.,
- 17 Lu, Z., Martin, R. V., Pfister, G. G., Pinder, R.W., Salawitch, R. J., and Wecht, K. J.: Emissions
- 18 estimation from satellite retrievals: A review of current capability, Atmos. Environ., 77, 1011–1042,
- 19 https://doi.org/10.1016/j.atmosenv.2013.05.051, 2013.
- 20 Stadtler, S., Simpson, D., Schröder, S., Taraborrelli, D., Bott, A., and Schultz, M.: Ozone impacts of gas-
- 21 aerosol uptake in global chemistry transport models, Atmos. Chem. Phys., 18, 3147-3171,
- 22 https://doi.org/10.5194/acp-18-3147-2018, 2018.
- Shan, W., Yin, Y., Zhang, J., and Ding, Y.: Observational study of surface ozone at an urban site in East
- 24 China, Atmos. Res., 89, 252–261, https://doi.org/10.1016/j.atmosres.2008.02.014, 2008.
- 25 Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate
- Change, John Wiley & Sons, Hoboken, 2016.
- 27 Sanchez-Ccoyllo, O. R., Ynoue, R. Y., Martins, L. D., and Andrade, M. D.: Impacts of ozone precursor
- 28 limitation and meteorological variables on ozone concentration in Sao Paulo, Brazil, Atmos.
- 29 Environ., 40, 552–562, https://doi.org/10.1016/j.atmosenv.2006.04.069, 2006.
- 30 Sun, Y., Wang, Y., and Zhang, C.: Vertical observations and analysis of PM_{2.5}, O₃, and NO_x at Beijing
- and Tianjin from towers during summer and Autumn 2006, Adv. Atmos. Sci., 27, 123,
- 32 https://doi.org/10.1007/s00376-009-8154-z, 2010.
- 33 Sun, Y., Yin, H., Liu, C., Zhang, L., Cheng, Y., Palm, M., Notholt, J., Lu, X., Vigouroux, C., Zheng, B.,
- 34 Wang, W., Jones, N., Shan, C., Qin, M., Tian, Y., Hu, Q., Meng, F., and Liu, J.: Mapping the drivers
- 35 of formaldehyde (HCHO) variability from 2015 to 2019 over eastern China: insights from Fourier
- 36 transform infrared observation and GEOS-Chem model simulation, Atmos. Chem. Phys., 21, 6365–
- 37 6387, https://doi.org/10.5194/acp-21-6365-2021, 2021a.
- 38 Sun, Y., Liu, C., Palm, M., Vigouroux, C., Notholt, J., Hui, Q. H., Jones, N., Wang, W., Su, W. J., Zhang,
- 39 W. Q., Shan, C. G., Tian, Y., Xu, X. W., De Maziere, M., Zhou, M. Q., and Liu, J. G.: Ozone seasonal
- 40 evolution and photochemical production regime in the polluted troposphere in eastern China derived
- from high-resolution Fourier transform spectrometry (FTS) observations, Atmos. Chem. Phys., 18,
- 42 14569-14583, 2018.
- 43 Sun, Y., Yin, H., Cheng, Y., Zhang, Q., Zheng, B., Notholt, J., Lu, X., Liu, C., Tian, Y., and Liu, J.:
- 44 Quantifying variability, source, and transport of CO in the urban areas over the Himalayas and

- Tibetan Plateau, Atmos. Chem. Phys., 21, 9201–9222, https://doi.org/10.5194/acp-21-9201-2021,
- 2 2021b
- 3 Sun, Y., Liu, C., Zhang, L., Palm, M., Notholt, J., Hao, Y., Vigouroux, C., Lutsch, E., Wang, W., Shan,
- 4 C. G., Blumenstock, T., Nagahama, T., Morino, I., Mahieu, E., Strong, K., Langerock, B., De
- 5 Maziere, M., Hu, Q. H., Zhang, H. F., Petri, C., and Liu, J. G.: Fourier transform infrared time series
- 6 of tropospheric HCN in eastern China: seasonality, interannual variability, and source attribution,
- 7 Atmos. Chem. Phys., 20, 5437-5456, 2020.
- 8 Steinbrecht, W., Kubistin, D., Plass Dülmer, C., Davies, J., Tarasick, D. W., Gathen, P., et al. (2021).
- 9 COVID-19 crisis reduces free tropospheric ozone across the Northern Hemisphere. Geophysical
- 10 Research Letters, 48, e2020GL091987. https://doi.org/10.1029/2020GL091987
- 11 Tarvainen, V., Hakola, H., Hellén, H., Bäck, J., Hari, P., and Kulmala, M.: Temperature and light
- dependence of the VOC emissions of Scots pine, Atmos. Chem. Phys., 5, 989-998,
- 13 https://doi.org/10.5194/acp-5-989-2005, 2005.
- 14 Van Dingenen, R., Dentener, F. J., Raes, F., Krol, M. C., Emberson, L., and Cofala, J.: The global impact
- of ozone on agricultural crop yields under current and future air quality legislation, Atmos. Environ.,
- 16 43, 604-618, 2009.

- Wang, T., Xue, L. K., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.: Ozone pollution in China: A
- 18 review of concentrations, meteorological influences, chemical precursors, and effects, Sci. Total
- 19 Environ., 575, 1582–1596, https://doi.org/10.1016/j.scitotenv.2016.10.081, 2017.
- 20 Wesely, M. L.: Parameterization of Surface Resistances to Gaseous Dry Deposition in Regional-Scale
- 21 Numerical-Models, Atmos. Environ., 23, 1293-1304, Doi 10.1016/0004-6981(89)90153-4, 1989.
- Wang, H., Wang W., Huang X., and Ding A.: Impacts of stratosphere-to-troposphere-transport on
- summertime surface ozone over eastern China. Science Bulletin 65. 4:276-279, 2020.
- Wang, X., Wu, Y., Randel, W., and Tilmes, S.: Stratospheric contribution to the summertime high
- surface ozone events over the western united states. Environ. Res. Lett., 15(10), 1040a6, 2020.
- 27 Sichuan Basin, southwestern China, Chemosphere, 254, 126735, ISSN 0045-6535,

Wang, P., Qiao X., Zhang, H.: Modeling PM_{2.5} and O₃ with aerosol feedbacks using WRF/Chem over the

- 28 https://doi.org/10.1016/j.chemosphere.2020.126735, 2020.
- 29 Wang, P., Shen, J., Xia, M., Sun, S., Zhang, Y., Zhang, H., and Wang, X.: Unexpected enhancement of
- ozone exposure and health risks during National Day in China, Atmos. Chem. Phys., 21, 10347-
- 31 10356, https://doi.org/10.5194/acp-21-10347-2021, 2021.
- 32 Xing, J., Wang, J., Mathur, R., Wang, S., Sarwar, G., Pleim, J., Hogrefe, C., Zhang, Y., Jiang, J., Wong,
- D. C., and Hao, J.: Impacts of aerosol direct effects on tropospheric ozone through changes in
- 34 atmospheric dynamics and photolysis rates, Atmos. Chem. Phys., 17, 9869-9883,
- 35 https://doi.org/10.5194/acp-17-9869-2017, 2017.
- 36 Yin, P., Chen, R., Wang, L., Meng, X., Liu, C., Niu, Y., Lin, Z., Liu, Y., Liu, J., and Qi, J.: Ambient Ozone
- Pollution and Daily Mortality: A Nationwide Study in 272 Chinese Cities, Environ. Health Persp.,
- 38 125, 117006, https://doi.org/10.1289/EHP1849, 2017.
- 39 Yin, H., Sun, Y. W., Liu, C., Zhang, L., Lu, X., Wang, W., Shan, C. G., Hu, Q. H., Tian, Y., Zhang, C. X.,
- 40 Su, W. J., Zhang, H. F., Palm, M. A., Notholt, J., and Liu, J. G.: FTIR time series of stratospheric
- 41 NO₂ over Hefei, China, and comparisons with OMI and GEOS-Chem model data, Opt. Express, 27,
- 42 A1225-A1240, 2019.
- 43 Yin, H., Sun, Y. W., Liu, C., Lu, X., Smale, D., Blumenstock, T., Nagahama, T., Wang, W., Tian, Y., Hu,
- 44 Q. H., Shan, C. G., Zhang, H. F., and Liu, J. G.: Ground-based FTIR observation of hydrogen

https://doi.org/10.5194/acp-2021-664 Preprint. Discussion started: 20 September 2021 © Author(s) 2021. CC BY 4.0 License.

1	chloride (HCl) over Hefei, China, and comparisons with GEOS-Chem model data and other ground-
2	based FTIR stations data, Opt. Express, 28, 8041-8055, 2020.
3	Zhang, L. M., Gong, S. L., Padro, J., and Barrie, L.: A size-segregated particle dry deposition scheme for
4	an atmospheric aerosol module, Atmos. Environ., 35, 549-560, 2001.
5	Zheng, B., Tong, D., Li, M., Liu, F., Hong, C. P., Geng, G. N., Li, H. Y., Li, X., Peng, L. Q., Qi, J., Yan,
6	L., Zhang, Y. X., Zhao, H. Y., Zheng, Y. X., He, K. B., and Zhang, Q.: Trends in China's
7	anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys.,
8	18, 14095-14111, 10.5194/acp-18-14095-2018, 2018.
9	Zheng, B., Zhang, Q., Geng, G., Chen, C., Shi, Q., Cui, M., Lei, Y., and He, K.: Changes in China's
10	anthropogenic emissions and air quality during the COVID-19 pandemic in 2020, Earth Syst. Sci.
11	Data, 13, 2895-2907, https://doi.org/10.5194/essd-13-2895-2021, 2021.
12	

Tables

1

Table 1. Measurement sites in the SCB city clusters. All sites are organised alphabetically. Population statistics are based on the seventh nationwide population census in 2020 provided by National Bureau of Statistics of China.

Name	Longitude mean	Latitude mean	Altitude mean (km)	Population	Number of sites	Time period
Abazhou	102.21°E	31.91°N	3.5	822,587	3	2015 - present
Bazhong	106.75°E	31.85°N	0.8	2,712,894	4	2015 - present
Chengdu	104.04°E	30.69°N	0.5	20,938,000	10	2015 - present
Chongqing	106.51°E	29.58°N	0.4	32,054,200	21	2015 - present
Dazhou	107.5°E	31.22°N	1.0	5,385,422	5	2015 - present
Deyang	104.39°E	31.12°N	0.5	3,456,161	4	2015 - present
Ganzizhou	101.96°E	30.05°N	3.5	1,107,431	2	2015 - present
Guangan	106.63°E	30.48°N	1.7	3,254,883	6	2015 - present
Guangyuan	105.85°E	32.44°N	2.1	2,305,657	4	2015 - present
Leshan	103.76°E	29.57°N	0.5	3,160,168	4	2015 - present
Liangshanzhou	102.28°E	27.87°N	2.3	4,858,359	5	2015 - present
Luzhou	105.43°E	28.9°N	0.3	4,254,149	4	2015 - present
Meishan	103.85°E	30.07°N	0.8	2,955,219	6	2015 - present
Mianyang	104.73°E	31.48°N	0.7	4,868,243	4	2015 - present
Nanchong	106.09°E	30.8°N	0.3	5,607,565	6	2015 - present
Neijiang	105.05°E	29.59°N	0.5	3,140,678	4	2015 - present
Panzhihua	101.69°E	26.56°N	2.6	1,212,203	5	2015 - present
Suining	105.71°E	30.58°N	0.5	2,814,196	4	2015 - present
Yaan	103.01°E	29.99°N	3.1	1,434,603	4	2015 - present
Yibin	104.62°E	28.78°N	2.0	4,588,804	6	2015 - present
Zigong	104.75°E	29.35°N	0.3	2,489,256	6	2015 - present
Ziyang	104.64°E	30.13°N	0.5	2,308,631	5	2015 - present

4

1 Figures

2

4

5

6

7

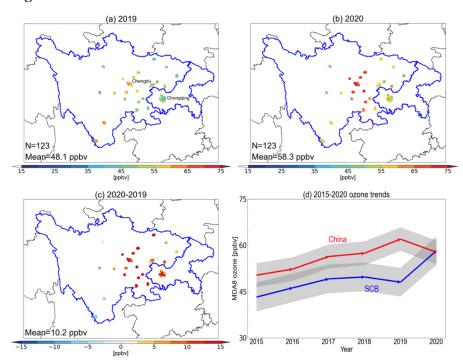


Figure 1 Surface O_3 enhancements over the SCB region in May-June 2020 vs. 2019. (a) Spatial distributions of May-June mean O_3 concentrations over the SCB region in 2019. Number (N) denotes available measurement sites for this year. We average the O_3 concentrations at all measurement sites in each city to form a city representative O_3 dataset. (b) Same as (a) but for 2020. (c) Differences between 2020 and 2019. (d) Trends in May-June mean ozone concentrations from 2015-2020 averaged for all Chinese cities (red) and for the SCB cities cluster (blue). Grey shadings represent the range of mean value \pm 1 σ STD across all cities.

3

4

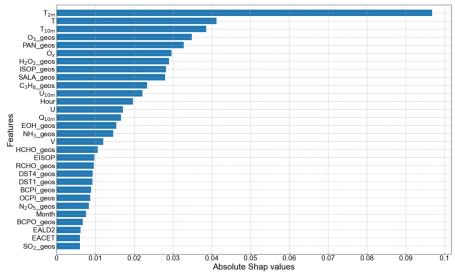


Figure 2 Importance of input variables for the XGBoost model trained to correct the GEOS-Chem model-to-measurement O₃ discrepancy over the SCB. Shown are the distribution of the SHAP values for each variable averaged over all cities in the SCB, ranked by the average importance of each feature. Higher SHAP value indicates higher feature importance. Descriptions for all acronyms are listed in Table A1. For clarity, only the top 30 variables are shown. See Figure S4 for importance of all variables.

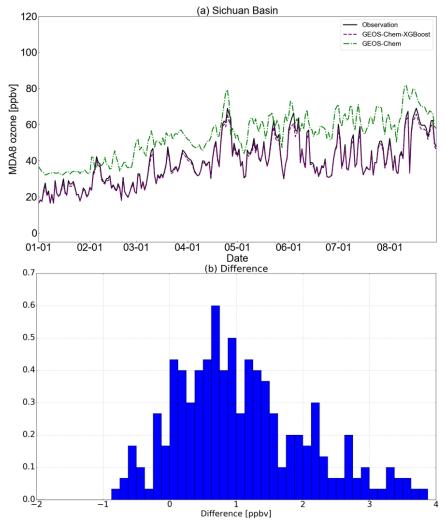


Figure 3 Measured and modelled O₃ variabilities over the SCB in 2019 (a). Measured, GEOS-Chem, and GEOS-Chem-XGBoost predicted O₃ values are denoted by black solid, grey dashed, and purple dashed lines, respectively.

^{4 (}b) Histogram of the differences between the GEOS-Chem-XGBoost predictions and the measurements.

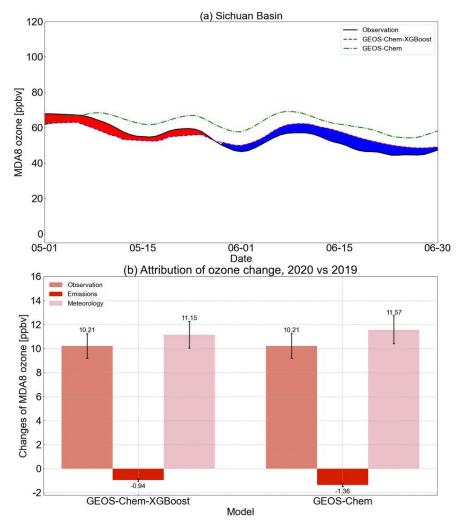


Figure 4 (a) Comparison of the GEOS-Chem-XGBoost O₃ predictions to the 2020 measurements. Red (blue) shadings represent where GEOS-Chem-XGBoost predictions are higher (lower) than the actual measurements in 2020, indicating that changes in anthropogenic emission lead to O₃ increase (decrease) in 2020. (b) Attribution of surface O₃ enhancements over the SCB in May-June 2020 vs. 2019. Filled colored bars denote O₃ change as seen from measurements, and due to changes in anthropogenic emission and meteorological conditions estimated by the GEOS-Chem-XGBoost model and the GEOS-Chem model. Black vertical bars represent 1σ STD across cities.

3

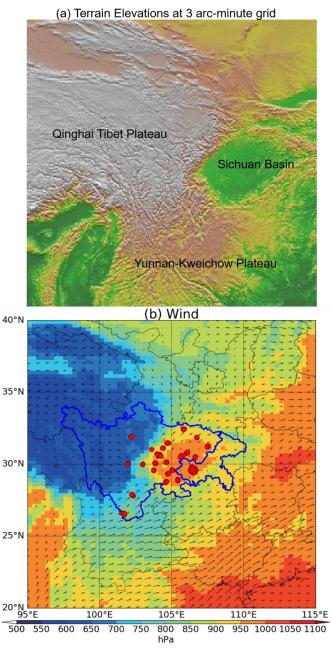


Figure 5 Terrain elevations (a) and surface temperature and wind fields (b) over the SCB and surrounding regions. The spatial resolutions for (a) and (b) are 3×3 are-minute and $0.25^{\circ} \times 0.25^{\circ}$, respectively. The white area in black line is Tibetan Plateau (with altitudes of 4–5 km a.s.l.), the yellow area in red line is the Yunnan-Kweichou Plateau (2–3 km a.s.l), the green area in circle is the SCB (0.5–1 km a.s.l).

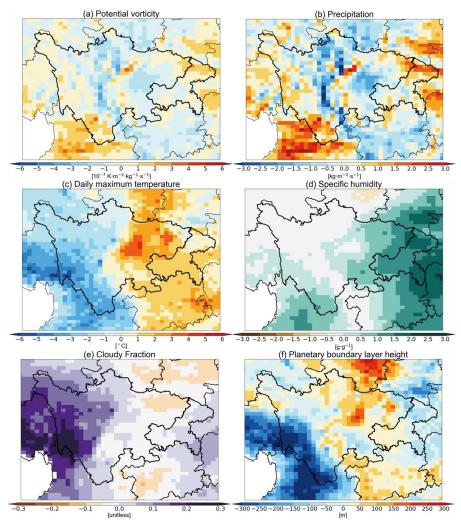


Figure 6 May-June mean differences in PV (a), precipitation (b), temperature (c), specific humidity (d), cloud fraction (e), and PBLH (f) between 2020 and 2019 over the SCB and surrounding regions. All these meteorological parameters are from the GEOS-FP dataset. PV is prescribed at the PBLH and others are at the surface.

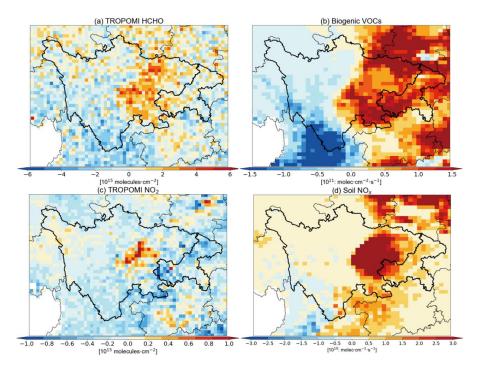


Figure 7 May-June mean differences in O₃ precursors between 2020 and 2019. (a) TROPOMI observed HCHO, (b) biogenic VOCs, (c) TROPOMI observed NO₂, and (d) Soil NO_x. Biogenic VOCs and soil NO_x are available from

4 GEOS-Chem model online calculations.

1 2

2

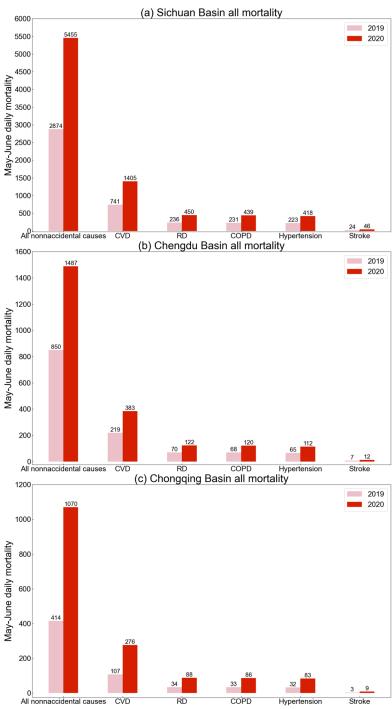


Figure 8 Total daily mortality from all non-accidental causes, CVD, RD, COPD, hypertension, and stroke attributable to ambient O₃ exposure over the SCB during May-June in 2019 and 2020.